Signal transduction pathways implicated in the decrease in CYP1A1, 1A2 and 3A6 activity produced by serum from rabbits and humans with an inflammatory reaction.

Abstract

Incubation of serum from rabbits with a turpentine-induced inflammatory reaction and from humans with an upper respiratory viral infection with hepatocytes from rabbits with a turpentine-induced inflammatory reaction for 4h reduces total cytochrome P450 content and activity of cytochrome P450 isoforms CYP1A1/1A2 and 3A6 without affecting the expression of these proteins. To document the signal transduction pathways implicated in the decrease in CYP1A1/1A2 and 3A6 activity, hepatocytes from rabbits with a turpentine-induced inflammatory reaction were incubated with serum from rabbits with a turpentine-induced inflammatory reaction, serum from individuals with a viral infection and interleukin-6 for 4h in presence of inhibitors of protein kinases. The sera-induced decrease in CYP1A1/1A2 and 3A6 activity was partially prevented by the inhibition of Janus-associated protein tyrosine kinase, double-stranded RNA-dependent protein kinase, protein kinase C, and p42/44 mitogen-activated protein kinase. The serum from rabbits with a turpentine-induced inflammatory reaction increased the phosphorylation of Erk1/2, effect prevented by PD98059 but not by bis-indolylmaleimide, a specific inhibitor of protein kinase C. The results demonstrated that the decrease in total cytochrome P450 content and in CYP1A1/1A2 and 3A6 activity by sera and interleukin-6 involves the activation of protein tyrosine kinases, p42/44 mitogen-activated protein kinase and protein kinase C. Indirect evidence supported that nitric oxide is implicated in the decrease in activity of these enzymes.

Topics

    0 Figures and Tables

      Download Full PDF Version (Non-Commercial Use)